

UNIFIED FORMULATION FOR TRANSVERSE (BETATRON)
AND LONGITUDINAL (SYNCHROTRON) OSCILLATIONS
IN A SYNCHROTRON

L. C. Teng
August 25, 1971

We develop here a formulation for the longitudinal oscillation (synchrotron oscillation or phase oscillation) in a synchrotron patterned after that for the transverse oscillation (betatron oscillation) which is easy to memorize and simple to use. To do this we first examine the features of the formulation for the transverse oscillation.

TRANSVERSE OSCILLATION

1. The physically simple variables are

These are not conjugate variables. Hence the (x,x')-space area $\pi\epsilon_x$ is not conserved but proportional to p⁻¹. We shall call ϵ_x the emittance.

2. With this choice of the dependent variables the independent variable should, then, be the length z along the orbit so that we can write the equations as

$$\frac{dx}{dz} = x'$$

$$\frac{dx'}{dz} = -K_x \times K_x = K_x(z).$$
(2)

3. We can then calculate a local wavelength $\beta_{_{\mathbf{X}}}$ such that the phase advance $d\mu_{_{\mathbf{X}}}$ is given by

$$d\mu_{x} = \frac{dz}{\beta_{x}} .$$
(3)

The oscillation wave number per turn $\nu_{_{\mathbf{X}}}$ is, then, given by

$$2\pi v_{x} = \oint d\mu_{x} = \oint \frac{dz}{\beta_{x}}. \qquad (4)$$

4. For elliptical (x,x')-space area, then, the peak \hat{x} and \hat{x}' are given by

$$\hat{\mathbf{x}} = \sqrt{\beta_{\mathbf{x}} \varepsilon_{\mathbf{x}}} , \qquad \hat{\mathbf{x}}' = \sqrt{\frac{\varepsilon_{\mathbf{x}}}{\beta_{\mathbf{x}}}} . \qquad (5)$$

LONGITUDINAL OSCILLATION

We consider only the adiabatic regions; the nonadiabatic region in the neighborhood of transition is omitted. The usual equations for small longitudinal oscillation can be written as

$$\begin{cases} \frac{d\phi}{dt} = -h\omega\Lambda \frac{\Delta p}{p}, & \Lambda = \frac{1}{\gamma^2} - \frac{1}{\gamma_t^2}, & \omega = \frac{c\beta}{R} \\ \frac{d\left(\frac{\Delta p}{p}\right)}{dt} = \frac{ev\cos\phi_s}{2\pi Rp} \psi \end{cases}$$
 (6)

where the notation is conventional and needs no explanation.

1. The physically simple and useful variables are $\begin{cases} \varphi &= \text{ phase deviation from synchronous } \varphi_{\mathbf{S}} \\ \\ \frac{\Delta \mathbf{p}}{\mathbf{p}} &= \text{ relative momentum deviation from synchronous } \mathbf{p}. \end{cases}$

These are not conjugate variables. The $\left(\phi,\frac{\Delta p}{p}\right)$ -space area $\pi\epsilon_{\phi}$ is not conserved but proportional to p^{-1} . We shall call ϵ_{ϕ} the emittance.

2. With this choice of the dependent variables the independent variables should, then, be ζ defined by

$$d\zeta \equiv -\Lambda h \omega dt \equiv -\Lambda d\phi_{rf}$$
 (8)

So defined, $d\varphi_{\mbox{\scriptsize rf}}$ is the rf phase advance. Now, we can write the equations as

$$\begin{cases} \frac{d\phi}{d\zeta} = \frac{\Delta p}{p} \\ \frac{d\left(\frac{\Delta p}{p}\right)}{d\zeta} = -\frac{V\cos\phi_s}{2\pi h\beta^2 \gamma \Lambda} \psi = -K_{\phi}\psi, \quad V = \frac{eV}{mc^2}. \end{cases}$$

$$\cos\phi_s$$

We assume the proper ϕ_s jump at transition so that $\frac{\cos\phi_s}{\Lambda}$ is always >0. Eq. (9) is similar to Eq. (2) with the exception that, now K_{ϕ} is a constant adiabatically independent of ζ , whereas K_x is a fast periodically varying function of z.

3. The wavelength β_{φ} is just

$$\beta_{\phi} = \sqrt{\frac{1}{K_{\phi}}} = \left(\frac{2\pi h \beta^2 \gamma \Lambda}{V \cos \phi_{s}}\right)^{1/2}.$$
 (10)

and the longitudinal phase advance is given by

$$d\mu_{\phi} = \left| \frac{d\zeta}{\beta_{\phi}} \right| = \frac{h|\Lambda|}{\beta_{\phi}} \omega dt = \left(\frac{h}{2\pi} \frac{\Lambda V \cos\phi_{s}}{\beta^{2} \gamma} \right)^{1/2} \omega dt. \tag{11}$$

The oscillation wave numer per turn v_{ϕ} is $\frac{1}{2\pi}$ (phase advance for $\int \omega dt = 2\pi$), namely

$$v_{\phi} = \frac{h |\Lambda|}{\beta_{\phi}} = \left(\frac{h}{2\pi} \frac{\Lambda V \cos \phi_{S}}{\beta^{2} \gamma}\right)^{1/2}.$$
 (12)

4. For elliptical $\left(\phi,\frac{\Delta p}{p}\right)$ space area, then, the peak $\hat{\phi}$ and $\frac{\widehat{\Delta p}}{p}$ are given by

$$\hat{\phi} = \sqrt{\beta_{\phi} \varepsilon_{\phi}} \quad , \qquad \qquad \frac{\widehat{\Delta p}}{p} = \sqrt{\frac{\varepsilon_{\phi}}{\beta_{\phi}}} \tag{13}$$

5. The emittance $\boldsymbol{\epsilon}_{\varphi}$ is given by

$$\varepsilon_{\dot{\varphi}} = \begin{cases} \hat{\varphi} & \widehat{\Delta p} \\ \frac{8}{\pi^2} & \hat{\varphi} & \widehat{\Delta p} \\ \frac{4}{\pi} & \hat{\varphi} & \widehat{\Delta p} \\ \end{cases} \quad \text{for full stationary bucket} \qquad (14)$$

UNITS

1. For transverse oscillation a set of consistent and convenient units is

$$\begin{cases} x & \text{in mm} \\ x' & \text{in mrad} \end{cases} \begin{cases} \epsilon_x & \text{in mm-mrad} \\ \beta_x & \text{in m} \end{cases}$$
 (15)

2. For longitudinal oscillation a set of consistent and convenient units is

$$\begin{cases} \phi & \text{in rad} \\ \frac{\Delta p}{p} & \text{in mil (10}^{-3}) \end{cases} \begin{cases} \epsilon_{\phi} & \text{in rad-mil} \\ \beta_{\phi} & \text{in kilo (10}^{3}) \end{cases}$$
 (16)

NUMERICAL VALUES FOR NAL BOOSTER

The measured linac beam characteristics at 200 MeV and at beam current up to 40 mA is

$$\begin{cases} \varepsilon_{x} = \varepsilon_{y} = 10 \text{ mm-mrad} \\ \frac{\widehat{\Delta p}}{p} = 1 \text{ mil} \end{cases}$$
 (17)

For one turn injection into the booster the beam in the booster at injection, therefore, has

$$\begin{cases} \varepsilon_{\mathbf{x}} = \varepsilon_{\mathbf{y}} = 10 \text{ mm-mrad} \\ \varepsilon_{\dot{\phi}} = 4 \text{ rad-mil (rectangular area with } \hat{\phi} = \pi) \end{cases}$$
 (18)

Scaled by p⁻¹, at various energies we have

	$\varepsilon_{\mathbf{x}} = \varepsilon_{\mathbf{y}}$	$\epsilon_{f \varphi}$
K.E. (GeV)	(mm-mrad)	(rad-mil)
0.2	10	4
1	3.80	1.52
2	2.31	0.926
3	1.68	0.674
4	1.33	0.532
5	1.10	0.440
6	0.937	0.375
7	0.818	0.327
8	0.725	0.290

For 7 GeV operation at extraction ($\gamma = 8.46 \, \beta = 0.993$) we have

$$\Lambda = -0.0197$$
 $\gamma_t = 5.446$
 $\cos \phi_s = -1$ $\phi_s = \pi$
 $V = 1.066 \times 10^{-4}$ if $v = 100 \text{ kV}$

and

$$\beta_{\phi} = 0.902 \text{ kilo.} \tag{19}$$

Using
$$\epsilon_{\varphi}$$
 = 0.327 rad-mil at 7 GeV we have
$$\begin{cases} \hat{\varphi} = \text{0.543 rad} & \frac{\widehat{\Delta p}}{p} = \text{0.602 mil} \\ \nu_{\varphi} = \text{1.83 x 10}^{-3} \end{cases}$$

Remembering that $\beta_{\varphi} \,\, \varpropto \,\, v^{-1/2}$ we see that

$$\hat{\phi} \propto v^{-1/2} \qquad \qquad \frac{\widehat{\Delta p}}{\widehat{p}} \propto v^{1/2} \qquad \qquad v_{\phi} \propto v^{1/2} \qquad (20)$$

When we have a definite final operating energy and a definite rf voltage program [v = v(t)] a table giving β_{ϕ} at various times (or energy) during the acceleration cycle should be computed.